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SUMMARY 

The use of the velocity-pressure formulation of the Navier-Stokes equations for the numerical solution 
of fluid flow problems is favoured for free-surface problems, more involved flow configurations, and 
three-dimensional flows. Many engineering problems involve such features in addition to strong inertial 
effects. The computational instabilities arising from central-difference schemes for the convective terms 
of the governing equations impose serious limitations on the range of Reynolds numbers that can be 
investigated by the numerical method. Solutions for higher Reynolds numbers Re > 1000 could be 
reached using upwind-difference schemes. A comparative study of both schemes using a method based 
on the primitive variables is presented. The comparison is made for the model problem of the driven 
flow in a square cavity. Using a central scheme stable solutions of the pressure and velocity fields were 
obtained for Reynolds numbers up to 5000. The streamfunction and vorticity fields were calculated 
from the resulting velocity field and compared with previous solutions. It is concluded that total upwind 
differencing results in a considerable change in the flow pattern due to the false diffusion. For practical 
calculations, by a proper choice of a small amount of partial upwind differencing the vorticity diffusion 
near the walls and the global features of the solutions are not sigificantly altered. 
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INTRODUCTION 

A wide scope of engineering problems require reliable solutions for fluid flows in rather 
complex configurations. In polymer technology and coating processes, fluid flows with 
free-surfaces and interfaces are commonplace. Strong inertial effects are present in many of 
the practical problems. All of these factors posed considerable difficulties for the numerical 
methods used in fluid mechanics. Numerical solutions for the viscous incompressible flow in 
simply-connected regions have received extensive attention over the last 15 years. Most of 
the well-established schemes of numerical integration employ the vorticity-streamfunction 
formulation of the momentum equations. Computer storage economy for two-dimensional 
calculations and conservation of mass and vorticity for finite spatial intervals seem to be the 
major advantages of solving the vorticity transport equation. In the case of problems 
involving free-surfaces and interfaces, the complexity of the boundary conditions, which 
include the pressure, prohibited the application of the vorticity-streamfunction formulation 
to an important class of fluid flow problems. In contrast, the pressure-velocity formulation of 
the Navier-Stokes equations seems more suitable for application of the boundary conditions 
on free-surfaces and interfaces. Practical problems of an essentially three-dimensional nature 
posed some difficulties for the vorticity transport equation at intermediate and higher 
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Reynolds numbers, Re>  400. Dennis et al.’ argued that three-dimensional schemes for the 
vorticity transport equation were found to be stable for Reynolds numbers considerably 
higher than Re = 100. However, they cautioned that reliable results need a considerable 
increase in computer storage requirements and execution time. DeVahl Davis and Mallin- 
son’ mentioned a three-dimensional solution using a velocity vector potential and vorticity. 
Although little detail was given in their paper’ they mentioned solutions limited to Re .cr 400. 
Fase13 concluded in his comprehensive review that the Navier-Stokes equations in primitive 
variable form are easier to extend to three-dimensional problems because of the advantage 
in computer storage requirements, and the relative simplicity of the boundary condition. 

It is well known that the application of finite-difference methods involves a certain 
compromise in accuracy. Only experimental comparative studies may determine the validity 
of the approximations used. The desire to extend the numerical solutions to higher Reynolds 
number applications has been always frustrated by the inherent computational instability of 
most finite-difference schemes. This instability may be overcome only by the unreasonable 
tendency towards ever diminishing spatial and temporal intervals of differencing. Comprom- 
ise techniques such as upwind differencing have received some attention over the last decade. 
The problems arising from the false diffusion introduced by the first-order approximation 
have raised a strong wave of objections to the use of upwind differencing. Critical evalua- 
tions of this m e t h ~ d ~ - ~  have pointed out some of the advantages and disadvantages, and 
called for caution. 

In the present study a finite-difference approach using the primitive variables is presented. 
The calculational scheme is based on the Marker and Cell7.’ intertwined mesh and uses a 
variable factor of upwind differencing to allow comparative studies of the central scheme and 
partial upwind differencing. In the study, the recirculating flow in a driven square cavity is 
selected as a model. The purpose of this work is to examine the possibilities of using central 
and upwind differencing with the primitive variables formulation, for an intermediate range 
of Reynolds numbers Re? 1000. Previous work has been reviewed in a number of papers, 
for example by DeVahl Davis and Mallinson,’ Tuann and Olson,’ and F a ~ e l . ~  The primitive 
variables approach has been developed by a number of investigators, using the basic ideas of 
Chorin’ and Williams. lo Three-dimensional solutions for the vorticity transport equation 
have been reported by Dennis et al.’ and Mallinson and DeVahl Davis.” Roache’s 
Computational nuid Dynamics,” and a recent book by Patankar13 may also be consulted. 

THE MATHEMATICAL MODEL 

The recirculat ing two-dimensional flow of viscous incompressible fluid is governed by the 
momentum equations. The convective form of these equations may be written as 

iit + 5. Vii = -Vp + ( l/Re)V’ii + EL/ U2 (1) 
which is known as the Navier-Stokes equation. The Reynolds number is defined as 
Re = pUL/p, where U is the velocity of the moving wall. The pressure is made dimensionless 
with respect to pU’ and distances-with respect to the side L of the cavity. The conservative 
form of the Navier-Stokes equation 

0, +V(6; 17) = -Vp + (1/Re)V26 + gL/U2 (2) 
is derived from the convective form using the continuity equation 

div ii = 0. (3) 
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Its advantage over the convective form is that it guarantees conservation of momentum for 
finite spatial intervals of differencing. It has been argued by Bozeman and Dalton14 that the 
conservative form yields solutions which are more consistent with the physical problem as 
defined by Batchelor15 for large Reynolds numbers. Torrance' has shown that the upwind 
differencing method applied to the conservative equations is considerably more accurate than 
central differencing applied to the non-conservative equations. The Navier-Stokes equations 
(1)-(3) in the primitive variables, though satisfying conservation of mass (the continuity 
equation) in the differential form, do not guarantee this physical law for the discretized 
equations. Harlow and Welch7 have shown that non-linear instability may be caused by 
forcing the dilation to be equal to zero. Instead it is possible according to Chorin' to iterate 
the pressure field in order to satisfy the continuity equation. Harlow and Welch7 solved a 
Poisson equation for the pressure with the proper Neumann type boundary conditions. In 
some applications," the use of non-Neumann type boundary conditions caused fatal deterio- 
ration in the convergence of the SOR-iteration. 

In our work the solution for the pressure and the velocity components is split by 
introducing the intertwined mesh system.8 The flow region is covered with a square 
perpendicular mesh, which consists of square cells. At the midpoint of each cell side a 
perpendicular velocity component is prescribed, and the pressure is prescribed at the centre 
of the cell. An auxiliary velocity field is calculated by the discretized Navier-Stokes 
equations. The pressure field is determined in the entire flow region and at the boundaries by 
forcing the dilation D iteratively to  satisfy the equation 

pLtl  = p' - AD, 

au av (4) D=-+- 
ax a y  

where A is an acceleration parameter determined as A = 1/2St(l/Sx2+ 1/6y2). The discretized 
form of the dilation D is used in equation (4) which is applied to every cell in the mesh. In 
equation (4), i is the iteration index. Hodge" has shown that the pressure iteration (4) can 
be directly related to an SOR-iteration of a Poisson equation for the pressure. The 
discretized form of the continuity equation is satisfied by equation (4) by means of varying 
the pressure, and subsequently adjusting the velocity components in every cell. The simple 
criterion for stopping the iterations is to require that the continuity is satisfied in every 
individual cell to a given tolerance. 

If X and Y denote the forward displacement operators and X-' and Y-'--the backward 
displacement operators, the following operators are defined for the x-co-ordinate 

6, = (X2 - 1)/2Ax ( 5 )  
8, = (1 - X-2)/2A~ (6) 
A, = (X + X-')/2 (7) 

A,, = ( X 2  + 1)/2 = XA, (8) 
A,, = (1 + X-2)/2 = X-IA, (9) 

S', = (x-x-')2Ax (10) 

Similar operators are defined for the y-co-ordinate. 
All the spatial derivatives except the convective terms are approximated by a second-order 
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central difference. For the convective terms we apply the partial upwind differencingY7-l9 as 
follows. 

a U 2  
-==( l -  a x  w)~, , (A,u)’+ w[~,(uM-(A, ,u)+ ~.,(uM+(A,,u))] ( 1 1 )  

(12) 
a uv - == ( 1  - w)&, ( A y U A y ~ )  + W[~, (UM-(A , ,V) )  +A,,v)) + 8, (uM’(A,,v))] 
a Y  
a uv 
-= ( 1  - W)~, , (A,UA~V)  + w[~,(vM-(A, ,u))  + ~,(VM+(A, ,U))]  ax 
avz ---=(I - w ) ~ , , ( A , v ) ~ +  w[G,(vM-(A,,v)+ ~.,(vM+(A,,v))] 
a Y  

(13) 

(14) 

where 

and w is the upwind differencing factor. The time derivative is approximated by a first-order 
forward difference. The mesh size is h = 2Ax = 2Ay. However, since the velocity components 
are prescribed at the midpoints of the corresponding cell sides, the finite difference operators 
are defined for the half-increments A x  and A y ,  as the displacement operators are defined for 
a half step. 

The analytical boundary conditions for the velocity are straightforward. No-slip conditions 
are imposed on three sides of the square, and a tangential constant velocity U is prescribed 
for the moving wall, with zero normal velocity to ensure that the wall is non-porous. The 
numerical form of these conditions for the left and right walls is 

u, = o  at the wall 
v ,+~=-v ,_~  across the wall 

For the bottom side the conditions are 

0, = o  at the wall 

u,++=-u,-;  across the wall 

The boundary conditions at the driven wall are 

v, = o  at the wall 

u,+; = 2 U -  u,-; across the wall 

where the subscript w indicates the wall position. The driven wall condition assumes a linear 
approximation for the value u,++. 
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RESULTS AND DISCUSSION 

The cavity problem as a model has been studied by several investigators. Burggraf” reported 
solutions for Reynolds numbers Re<400. These results were in good agreement with the 
experimental results of Pan and Acrivos.21 Other i n v e s t i g a t ~ r s ~ ~ ’ ~ ~ ~ ~ ~ ~ ~  tested novel numerical 
schemes by solving the model problem. In our study a set of numerical solutions for different 
Reynolds numbers up to Re = 5000 was obtained using various mesh sizes for the central and 
partial upwind schemes. All solutions were obtained for a cavity with an aspect ratio of one. 
Three mesh sizes, h = 2Ax = 2Ay = 0-1, 0-05 and 0.025, were tested at Reynolds number 
Re = 1000. The three approximations were compared to establish their convergence to a true 
solution with decreasing mesh size. The vorticity values for the three sizes were compared at 
the centre of the moving wall, and along the vertical through the centre of the cavity. For the 
mesh sizes h = 0.1, 0.05 and 0.025, the vorticity value at the centre of the moving wall was 
(5 = 13.3074, 17.9997, and 18.0376 respectively with a change of about 0.2 per cent when 
the mesh size was decreased from h = 0.05 to h = 0.025. This comparison was made using a 
central difference scheme w = O .  The vorticity along the vertical through the centre of the 
cavity for h = 0.05 and 0.025 cannot graphically be distinguished. Subsequently all calcula- 
tions were made for the mesh size h = 0.025. The basic output of the calculations consisted 
of velocity and pressure fields. However, for the purpose of comparison with previous 
solutions the streamfunction and vorticity were calculated from the final velocity field. The 
streamfunction q(x ,  y) defined by the vertical velocity component as 

a* 
ax 

v = - -  

may be obtained by discretizing this equation using a central finite-difference representation 

V,-$,,h = * c - l , l - ~ z , ,  

assuming a zero value €or the streamfunction at the rigid walls. The vorticity S(x, u )  is 
defined by the equation 

It may be calculated using the discretized form 

(51.1 = (v,+4,j-v,-g,J/h -(ux,j+i- Ut,,-4)th 

whereas the vorticity boundary values are calculated by a two-dimensional interpolation 
from the internal values. The convenience of applying central finite-difference formulas for 
the definitions of the streamfunction and vorticity led to arrays defined at the nodes of the 
mesh, unlike the velocity and pressure fields. To preserve the stability of calculations, the 
time step was chosen to ensure that a fluid particle travelled a distance less than the cell size 
in every cell in the mesh during the time step. For the cases reported in this work 
Re = 1000,2000 and 5000, the time steps were 5 x lo-’, 2.5 x lo-’ and lo-’ respectively. 
The total number of time steps needed to attain steady state ranged from 8,000 to 10,000 in 
all cases. The pressure iterations within each time step followed one pattern in all cases. In 
the first time step an average of 120 pressure iterations was needed to adjust the initial data. 
The number of iterations then subsided rapidly to a minimum of 2-4 pressure iterations in 
each time step. As mentioned before, our calculations were in the range 100O.~:Rei5000. 
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Although DeVahl Davis and Mallinson2 computed a case with Re = 5000, they published, 
like other  investigator^,'^,^^ the data for Re = 1000. Hence, we compare the detail of our 
results for the same Reynolds number. 

Figures l(a)-(c) illustrate the equivorticity lines for a Reynolds number Re = 1000 for 
three cases. The first case (Figure l(a)) is a central difference scheme w =O. The partial 
upwind schemes (Figures l(b) and l(c>) are for w = 0.1 and w = 0.8. The core of the primary 
vortex in Figure l(a) occupies most of the cavity area and the vorticity is practically constant 
inside this core. This is consistent with the physical model suggested by Batchelor.'s Strong 
vorticity gradients are observed in the neighbourhood of the rigid walls. The corresponding 
streamlines (Figure 2(a)) show two contrarotating vortices in the lower corners of the cavity 

7 0.0 

(4 
Figure 1. Contour levels for vorticity, Re = 1000. (a) Central scheme w -0.0; (b) Partial upwind scheme w =0.1, 

(c) Partial upwind scheme w = 0.8 
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Figure 2. Streamlines, Re = 1000. (a) Central scheme w = 0.0, (b) Partial upwind scheme w = 0.1, (c) Partial upwind 
scheme w = 0.8 

as predicted by most previous ~ o r k . ~ , ’ ~  In general, the solution for the central difference 
scheme (Figures l(a), 2(a)) is in good agreement with previously accepted solutions, obtained 
for the vorticity-streamfunction formulation, using an implicit iterative method.’ In the 
coarser mesh h =0.1, the central difference scheme converged to a solution with an 
oscillatory nature in the vorticity values near the moving wall. In contrast, with a strong 
partial upwind component w =0-8 (Figure l(c)) the vorticity gradients near the rigid walls 
are reduced, and the primary vortex core is smaller. This is an indication of a lower Reynolds 
number solution. The corner vortices are smaller in size compared to the results of the 
central scheme, as illustrated by the streamlines (Figures 2(a), 2(c)). Although the formal 
first-order accuracy  AX) of the upwind differencing scheme” retains ‘something’ of the 
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second-order accuracy of the advection field, if the dependent variable is slowly varying in 
space (nearly linear advection), for intermediate Reynolds numbers (e.g. Re = 1000) the 
solution is seriously afflicted by the false diffusion. Such features were observed in previous 

Our calculations with a small partial upwind component w = 0.1 (Figures l(b), 2(b)) 
show that the global features of the vorticity diffusion (Figure l(b)) remain close to the 
second-order solution of the central difference scheme. Since the streamfunction is a less 
sensitive value, it may be observed in Figures 2(a) and 2(b) that the streamlines for w = 0 and 
w =0.1 are almost identical. The corner vortices are of the same size in both solutions and 
are in good agreement with previous vorticity transport solutions.’ The streamlines of the 
upwind scheme w = 0.8 (Figure 2(c)) are noticeably different from other solutions, and the 

( C )  

Figure 3. Contour levels for pressure, Re  = 1000. (a) Central Scheme w = 0.0, (b) Partial upwind scheme w = 0.1, 
(c) Partial upwind scheme w = 0.8 
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Figure 4. Vorticity distribution along a line through the centre of the primary vortex 

corner contrarotating vortices are smaller. The pressure contours for Re = 1000, using the 
same difference schemes, are shown in Figures 3(a)-(c). The core of the cavity is a negative 
pressure region. The pressure gradients near the rigid walls are greatest in the case of the 
central difference scheme (Figure 3(a)). The contours experience noticeable changes as we 
increase the upwind component to w = 0.1 and then w = 0.8 (Figures 3(b), 3(c)). One more 
measure of examining the numerical solutions is to compare the vorticity distribution along a 
line through the centre of the primary vortex. This comparison (Figure 4) shows that the 
small partial upwind-difference component w = 0.1 slightly deflects the values obtained by 
the central scheme. The strong upwind scheme w = 0.8 considerably influences the rate of 
vorticity transport to the core of the cavity. The comparison with previous work2*I4 indicates 
that the central difference scheme yields solutions in agreement with the physical features of 
the problem. Upwind difference schemes seem to lead to progressively inaccurate results as 

Figure 5. Streamlines, Re = 2000, w = 0.0, central scheme 
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Figure 6. Streamlines, Re = 5000, w = 0.0, central scheme 

the upwind component w is increased. The pressure and vorticity are more sensitive to the 
false diffusion introduced by the first-order approximation of the advection terms in upwind 
differencing. 

The central difference scheme w = O  produced stable solutions with the mesh size h = 
0.025 up to a Reynolds number of Re  = 5000 (Figures 5 and 6). In these figures the values of 
the streamfunction are multiplied by a factor of 10. A third, secondary vortex appears 
downstream near the moving wall at a Reynolds number Re=2000 (Figure 5) ,  and the 
constant vorticity core is enlarged (Figure 6) as expected with higher Reynolds numbers. The 
oscillatory behaviour of the vorticity observed by KellerZ4 for Re = 5000 and h = 0-01 is not 
present in our calculations for the same Reynolds number using the central difference 
scheme and h = 0.025. Calculations for higher Reynolds number (Re = 10,000) were attemp- 
ted. With a time step of At = and a mesh size h =0-025 the calculations suffered from 
persistent oscillations, and wiggles appeared in the streamlines. A smaller time step would 
probably cure these symptoms, since the global features of a larger constant vorticity core 
and the continuation of the secondary vortices pattern observed for Re = 5000 were present. 
It is our conclusion that for the intermediate range of Reynolds numbers, the use of central 
difference scheme for the convection terms leads to more reliable results. Upwind differenc- 
ing schemes show considerable changes in the solution, especially in the vorticity and 
pressure fields. 
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